УТВЕРЖДАЮ Руководитель ГЦИ СИ ФГУП «СНИИМ» В.И. Евграфов « 09 » **2013** г.

ИЗМЕРИТЕЛЬ МОЩНОСТИ СВЧ

M3M-18

Методика поверки ЖНКЮ.468161.001 ДЗ

Содержание

1	Общие указания	4
2	Операции поверки	5
3	Средства поверки	6
4	Требования безопасности	8
5	Условия проведения поверки	9
6	Подготовка к поверке	10
7	Проведение поверки	11
8	Оформление результатов поверки	21
Пр	иложение А	22

1 Общие указания

1.1 Настоящая методика устанавливает методы и средства первичной и периодической поверки измерителя мощности СВЧ МЗМ-18 (далее – измеритель), а также его поверки после ремонта.

1.2 Поверка измерителя производится аккредитованными органами метрологической службы. Межповерочный интервал – 12 месяцев.

1.3 Перед проведением поверки поверителю следует ознакомиться с указаниями, изложенными в руководстве по эксплуатации ЖНКЮ.468161.001 РЭ.

2 Операции поверки

2.1 При проведении поверки следует выполнить операции, указанные в таблице 1.

Таблица 1

	Методы по-	Обязательность проведения				
Наименование операции	верки (но-	ПОН	зерки			
	мер пункта)	первичной	периодической			
Внешний осмотр	7.1	+	+			
Проверка присоединительных размеров	7.2	+	+			
Опробование	7.3	+	+			
Определение КСВН входа СВЧ измерите- ля	7.4	+	+			
Определение погрешности измерений	7.5	+	+			
Проверка программного обеспечения	7.6	+	+			

2.2 В случае выявления несоответствия требованиям в ходе выполнения любой операции, указанной в таблице 1, поверяемый образец бракуется, поверка прекращается, и на него оформляют извещение о непригодности в соответствии с ПР 50.2.006-94.

2.3 Результаты поверки заносить в таблицы, форма которых приведена в приложении А.

3 Средства поверки

3.1 При проведении поверки следует применять средства поверки, указанные в таблицах 2 и 3 .

Т	a	б	Л	И	Ц	а	2
---	---	---	---	---	---	---	---

Номер	Наименование основного средства измерений; обозначение нормативного доку-
пункта	мента, регламентирующего технические требования к средству; и (или) метроло-
методики	гические и основные технические характеристики
7.2	Комплект для измерений соединителей коаксиальных (КИСК-7). Пределы допус-
	каемой погрешности измерений присоединительных размеров соединителей
	$\pm 0,02$ MM.
7.3, 7.4,	Измеритель модуля коэффициента передачи и отражения (WM-18):
7.5	– диапазон частот от 0,01 до 18 ГГц;
1.5	– стабилизированный уровень выходной мощности от минус 10 до 10 дБм;
	– предел допускаемой погрешности измерений $\pm 5 \cdot K_{cmU}$ %.
	– соединитель – тип III.
7.5	Ваттметр поглощаемой мощности (МЗ-90):
	 – диапазон частот от 0,02 до 18,00 ГГц;
	– диапазон измеряемой мощности СВЧ от минус 40 до 10 дБм;
	– КСВН входа преобразователя не более 1,4;
	– предельно допустимая погрешность измерений ± 6 %.
7.5	Нагрузки согласованные (из наборов мер Н3-2 и Н3-6). Соединитель тип III «вил-
	ка» по ГОСТ РВ 51914-2002.
Приме	чания:

1 Применяемые при поверке средства измерений должны быть поверены и иметь свидетельства о поверке.

2 Допускается применение иных средств измерений, обеспечивающих определение метрологических характеристик поверяемых средств с требуемой точностью.

Таблица 3

Номер	Наименование вспомогательного средства поверки: обозначение нормативного
пункта	документа, регламентирующего технические требования к средству; и (или) ос-
методики	новные технические характеристики
1	2
7.5	Делитель мощности:
	– КСВН входа/выходов не более 1,3 в диапазоне частот от 10 МГц до 18 ГГц, вно-
	симые потери не более 7,5 дБ;
	– соединители - тип III (N).
7.5	Аттенюатор [*] 10 дБ (аттенюаторы 1,2 и 3)
	– КСВН входа/выхода:
	не более 1,05 на частоте 50 МГц;
	не более 1,30 в диапазоне частот от 50 МГц до 18 ГГц;
	– соединители - тип III (N).

 $^{^{*}}$ У аттеню
аторов, используемых совместно с делителем мощности в качестве развязывающих, отличие коэффициентов передачи не должно превышать \pm 0,5 дБ во всем указанном частотном диа
пазоне.

Продолжение таблицы 3.

1	2
7.5	Ступенчатый аттенюатор (ТТ-4138/В):
	– КСВН входа/выхода на частоте 50 МГц не более 1,1;
	– диапазон ослаблений от 0 до 55 дБ с шагом 1 дБ;
	– суммарная погрешность установки ослабления ± 2 дБ;
	– соединители – тип N «розетка».
7.5	Усилитель мощности (ZFL-1000VH):
	– коэффициент усиления по мощности 20 дБ на частоте 50 МГц;
	 – максимальная выходная мощность не менее 500 мВт;
	– соединители - тип SMA «розетка».
7.5	Источник питания постоянного тока:
	– диапазон напряжений от 12 до 18 В;
	 – максимальный выходной ток не менее 350 мА.
7.5	Фильтр нижних частот (SLP-90):
	– частота среза от 50 до 90 МГц;
	– ослабление в диапазоне частот свыше 100 МГц не менее 20 дБ;
	– соединители - тип SMA.
7.3, 7.4,	Переход коаксиальный (переход 1):
7.5	– КСВН не более 1,3 в диапазоне частот от 0,01 до 18,00 ГГц;
7.5	– соединители N «розетка» – SMA «розетка».
	Переход коаксиальный (переход 2):
	– КСВН не более 1,3 в диапазоне частот от 0,01 до 18,00 ГГц;
	– соединители N «вилка» – SMA «розетка».
	Переход коаксиальный (переход 3):
	– КСВН не более 1,1 на частоте 50 МГц;
	– соединители N «вилка» – SMA «вилка».
7.5	IBM PC – совместимый компьютер, имеющий интерфейс USB, с операционной
	системой Windows [®] 2000/XP (ЭВМ)
Приме	чание:
Типы соед	инителей, указанных в таблице, в соответствии с ГОСТ РВ 51914-2002.

4 Требования безопасности

4.1 При проведении поверки необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей», «Правила техники безопасности при эксплуатации электроустановок потребителей» и правила охраны труда.

4.2 К проведению поверки допускаются лица, прошедшие инструктаж по ТБ на рабочем месте, имеющие группу по технике электробезопасности не ниже II, освоившие работу с измерителем и применяемыми средствами поверки, изучившие настоящую методику и аттестованные в соответствии с ПР 50.2.012–94.

5 Условия проведения поверки

- 5.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха: (25 ± 5)°С;
- относительная влажность воздуха:
- атмосферное давление:

не более 80 %; от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.);

6 Подготовка к поверке

6.1 Убедиться в выполнении условий проведения поверки.

6.2 Проверить, чтобы аккумулятор измерителя был полностью заряжен, при необходимости зарядить.

7 Проведение поверки

7.1 Внешний осмотр

7.1.1 При внешнем осмотре проверить отсутствие видимых механических повреждений корпуса, следов коррозии металлических деталей и отсутствие следов воздействия жидкостей или агрессивных паров, сохранность маркировки и пломб (наклеек).

7.1.2 Результаты проведения операции считать положительными, если выполняются требования 7.1.1.

7.2 Проверка присоединительных размеров

7.2.1 Проверку присоединительного размера входа СВЧ измерителя 5,28 мм проводить с применением комплекта КИСК-7 в соответствии с указаниями эксплуатационной документации на него.

7.2.2 Результаты выполнения операции считать положительными, если присоединительный размер соответствует требованиям ГОСТ РВ 51914-2002 для соединителей тип III «вилка».

7.3 Опробование

7.3.1 Подготовить измеритель к работе в соответствии с разделом 3 руководства по эксплуатации ЖНКЮ.468161.001 РЭ. Включить измеритель. Убедиться в наличии индикации.

7.3.2 В соответствии с указаниями, приведенными в разделе 4 руководства по эксплуатации, выполнить «Сброс настроек», проверить значения, установленные по умолчанию.

7.3.3 Собрать схему измерений в соответствии с рисунком 1.

7.3.4 Включить измеритель модуля коэффициента передачи и отражения WM-18 (далее WM) согласно эксплуатационной документации на него.

A1 – WM; A2 – переход 1; А3 – измеритель Рисунок 1

7.3.5 Установить на WM значение фиксированной частоты 50 МГц и уровень мощности 0 дБм (СВЧ колебания без модуляции).

7.3.6 Произвести измерение мощности измерителем. Различие измеренного значения уровня мощности СВЧ и установленного значения на выходе WM должно быть не более ± 1,8 дБ.

7.3.7 Повторить 7.3.6 – 7.3.7, последовательно устанавливая на WM уровни выходной мощности минус 10 дБм и 10 дБм. Выключить измеритель.

7.3.8 Результаты выполнения операции считать положительными, если измеритель включается, реагирует на управление и производит измерение уровней мощности СВЧ сигнала в соответствии с требованиями 7.3.6 и 7.3.7.

7.4 Определение КСВН входа СВЧ измерителя

7.4.1 Установить на WM диапазон частот от 0,01 до 18,00 ГГц, уровень выходной мощности 0 дБм и подготовить для измерений КСВН согласно эксплуатационной документации на него.

7.4.2 Собрать схему измерений в соответствии с рисунком 2. Определить максимальные значения КСВН входа СВЧ измерителя в диапазонах частот: от 0,01 до 12,00 ГГц и свыше 12 ГГц.

7.4.3 Результаты выполнения операции считать положительными, если измеренные значения КСВН не превышают:

– 1,4 в частотном диапазоне от 0,01 ГГц до 12,00 ГГц;

– 1,5 в частотном диапазоне свыше 12 ГГц.

А1 – WM; А2 – переход 2; А3 – датчик КСВН из состава WM; А4 – измеритель Рисунок 2

7.5 Определение погрешности измерений

7.5.1 Определение коэффициентов передачи делителя мощности*

7.5.1.1 Подготовить к работе WM и ваттметр поглощаемой мощности M3-90 (далее образцовый ваттметр) согласно эксплуатационной документации на них.

7.5.1.2 Собрать схему измерений в соответствии с рисунком 3.

7.5.1.3 Установить единицы измерения образцового ваттметра «дБм». На WM установить значение фиксированной частоты 50 МГц и уровень мощности, соответствующий показаниям образцового ваттметра, от 0 дБм до минус 3 дБм. Зафиксировать показание образцового ваттметра P.

П р и м е ч а н и е - в случае применения образцового ваттметра, измеряющего мощность СВЧ сигнала в дольных единицах «Вт», для перевода результата измерений в «дБм» используйте следующую формулу:

$$P \cdot E_{\mathcal{M}} = 10 \cdot \log(P \cdot aBm)$$
(1)

^{*} Периодичность проверки коэффициентов передачи делителя мощности определяется интенсивностью его использования, но не реже одного раза на каждые 1000 подключений к соединителям делителя, либо при отсоединении или замене развязывающих аттенюаторов.

7.5.1.4 Подключить делитель мощности вместе с развязывающими аттенюаторами в соответствии с рисунком 4. В качестве развязывающих использовать аттенюаторы ослаблением 10 дБ (аттенюаторы 1 и 2). Нагрузки согласованные из наборов мер H3-2 или H3-6 следует применять в зависимости от частоты измерений. В дальнейшем, делитель мощности должен использоваться с теми же аттенюаторами, которые применялись при определении коэффициентов передачи, запрещается развязывающие аттенюаторы 1 и 2 отсоединять от делителя и менять их местами. Измерить и зафиксировать образцовым ваттметром значение мощности P_{K1} , дБм, на выходе аттенюатора 1.

A1 – блок индикаторный образцового ваттметра; A2 – преобразователь измерительный образцового ваттметра; A3 – WM; A4 – переход 1; A5 – аттенюатор 3

A1 – блок индикаторный образцового ваттметра; A2 – преобразователь измерительный образцового ваттметра; A3 – WM; A4 – переход 1; A5 – аттенюатор 3; A6, A8 –аттенюаторы 1 и 2 соответственно; A7 – делитель мощности; A9 – нагрузка согласованная

Рисунок 4

7.5.1.5 Подключить нагрузку согласованную к выходу развязывающего аттенюатора 1. Преобразователь измерительный образцового ваттметра подключить к выходу развязывающего аттенюатора 2. Измерить и зафиксировать образцовым ваттметром значение мощности P_{K2} , дБм, на выходе аттенюатора 2.

7.5.1.6 Рассчитать коэффициенты передачи делителя мощности: $K1_{f}$ (модуль коэффициента передачи от входа делителя мощности к выходу развязывающего аттенюатора 1 на частоте f) и $K2_{f}$ (модуль коэффициента передачи от входа делителя мощности к выходу развязывающего аттенюатора 2 на частоте f) по формуле:

$$Ki_f = P_{Ki} - P$$
, дБ (2)

где *Р* – значение мощности, измеренное в 7.5.1.3, дБм;

 P_{Ki} – значения мощностей, измеренные в 7.5.1.4 и 7.5.1.5, дБм.

7.5.1.7 Повторить измерения на частотах от 1 ГГц до 18 ГГц с шагом 1 ГГц согласно 7.5.1.2 – 7.5.1.6. На частотах свыше 10 ГГц измерение на каждой частоте следует проводить 3 раза. За результат Ki_t принять среднее арифметическое значение.

7.5.1.8 Рассчитать для каждой частоты коэффициент k_t , дБ, по формуле:

$$k_f = K l_f - K 2_f \tag{3}$$

Полученные коэффициенты использовать при определении погрешности измерений.

7.5.2 Определение значения СКО результата измерений

7.5.2.1 Подготовить образцовый ваттметр к проведению измерений.

7.5.2.2 Собрать схему измерений в соответствии с рисунком 5.

А1 – блок индикаторный образцового ваттметра; А2 – преобразователь измерительный образцового ваттметра; А3 – WM; А4– фильтр нижних частот; А5 – переход 2; А6 – ступенчатый аттенюатор; А7, А9 – аттенюаторы 1 и 2 соответственно; А8 – делитель мощности; А10 – измеритель; А11 – ЭВМ

Рисунок 5

7.5.2.3 Запустить программу ЖНКЮ.02015-00 «Измеритель мощности СВЧ» и произвести соединение (установить связь) измерителя с ЭВМ согласно указаниям руководства по эксплуатации ЖНКЮ.468161.001 РЭ.

7.5.2.4 В окне программы нажать кнопку «Состояние», установить следующие параметры «Частотная коррекция» – 0,1 ГГц; «Количество усреднений» – 64; «Единицы измерения» – Вт и «Компенсация ослабления» – 0 дБ. Выбрать режим «ССПУ».

7.5.2.5 Открыть диалоговое окно «Протоколирование», установить значение интервала измерений 0,5 с; последовательно выбрать флажки «Добавить информацию о приборе», «Нумерация», «Время», «Дата», «Сохранять в файл» и, после появления окна «Сохранять как», указать имя файла протокола и путь его расположения. При отсутствии файла, необходимо его создать.

7.5.2.6 На WM установить значение фиксированной частоты 50 МГц. С помощью ступенчатого аттенюатора и регулировки уровня выходной мощности WM установить по показаниям образцового ваттметра уровень измеряемой мощности [(-40,0 + k_j) ± 0,1] дБм; где k_j – коэффициент, определенный на частоте 50 МГц (см. 7.5.1).

7.5.2.7 В программе управления выбрать «Непрерывно», зафиксировать время начала измерений. По истечении 5 минут убрать флажок «Непрерывно».

7.5.2.8 Открыть файл протокола, рассчитать значение СКО результата измерений мощности СВЧ σ , нВт (данные из столбца «Мощность»).

7.5.2.9 Значение σ должно быть не более 2,5 нВт. Если значение СКО результата измерений превышает указанное значение, поверку прекращают и измеритель бракуют.

7.5.3 Определение составляющей погрешности, зависящей от уровня мощности

7.5.3.1 Перевести измеритель в режим меню и выбрать «Сброс настроек» («Default Settings»), после чего снова включить измеритель.

7.5.3.2 Подготовить к измерениям образцовый ваттметр, установить единицы измерения «дБм» (см. примечание по 7.5.1.3).

7.5.3.3 Собрать схему измерений в соответствии с рисунком 6.

7.5.3.4 Установить ослабление ступенчатого аттенюатора 0 дБ. Включить источник питания постоянного тока, установить требуемое для усилителя значение напряжения питания.

7.5.3.5 Установить на WM значение фиксированной частоты 50 МГц и уровень мощности, соответствующий показанию образцового ваттметра 10 дБм.

7.5.3.6 Произвести одновременный отсчет показаний образцового ваттметра P_0 , дБм, и измерителя $P_{_{H3M}}$, дБм.

7.5.3.7 Рассчитать коэффициент λ, дБ, по формуле:

$$\lambda = P_{H3M} - P_0 + k_f \tag{4}$$

где k_{t} – коэффициент, определенный на частоте 50 МГц (см. 7.5.1).

7.5.3.8 Повторить выполнение 7.5.3.6, 7.5.3.7 три раза, перед каждым измерением отключать мощность CBЧ колебаний WM на 5 с нажатием кнопки «RF Level» (RF Off), расположенной на передней панели.

7.5.3.9 Вычислить и зафиксировать среднее арифметическое значение (λ_{CP}) четырех значений по формуле:

$$\lambda_{CP} = \frac{\sum_{i=1}^{n} 10^{\frac{\lambda_i}{10}}}{n} \tag{5}$$

где *n* – количество измерений (значений λ), для которых рассчитывается среднее арифметическое.

А1 – блок индикаторный образцового ваттметра; А2 – преобразователь измерительный образцового ваттметра; А3 – WM; А4 – усилитель; А5 – фильтр нижних частот; А6 – переход 3; А7 – ступенчатый аттенюатор; А8, А10 – аттенюаторы 1 и 2 соответственно; А9 – делитель мощности; А11 – источник питания; А12 – измеритель

Рисунок 6

7.5.3.10 Повторить 7.5.3.6 – 7.5.3.9 для значений уровней мощности на выходе WM, соответствующим показаниям образцового ваттметра: 5 дБм, 0 дБм, минус 10 дБм; минус 20 дБм, минус 30 дБм и минус 40 дБм. Точное установление уровня мощности следует производить путем изменения ослабления ступенчатого аттенюатора и уровня выходной мощности WM. При измерении уровней мощности минус 30 и минус 40 дБм установить количество усреднений 32 и 64 соответственно.

7.5.3.11 Рассчитать составляющую погрешности измерений, зависящую от уровня мощности δ_{i1} , %, для каждого из измеренных уровней мощности на опорной частоте (50 МГц) по формуле:

$$\delta_{i1} = (\lambda_{CPi} - 1) \cdot 100 \tag{6}$$

где *λ_{CPi}* – средние значения коэффициентов, рассчитанных по формуле (5) для уровней мощности в последовательности: минус 20, + 10, + 5, 0, минус 10, минус 30 и минус 40 дБм.

7.5.4 Определение составляющей погрешности, зависящей от частоты

7.5.4.1 Перевести измеритель в режим меню и выбрать «Сброс настроек» («Default Settings»). Включить измеритель.

7.5.4.2 Подготовить к измерениям образцовый ваттметр, установить единицы измерения «дБм» (см. примечание по 7.5.1.3). При дальнейших измерениях использовать частотную коррекцию измерителя и образцового ваттметра.

7.5.4.3 Собрать схему измерений в соответствии с рисунком 7.

7.5.4.4 Установить на WM значение фиксированной частоты 1 ГГц и уровень мощности, соответствующий показаниям образцового ваттметра, минус 20 дБм.

7.5.4.5 Произвести одновременный отсчет показаний образцового ваттметра P_0 , дБм, и измерителя $P_{\rm H3M}$, дБм.

7.5.4.6 Рассчитать коэффициент λ по формуле (4), используя коэффициент k_j , определенный на частоте измерений (см. 7.5.1).

7.5.4.7 Повторить выполнение 7.5.4.4 – 7.5.4.6 для частот от 2 до 18 ГГц с шагом 1 ГГц.
7.5.4.8 Отключить мощность СВЧ колебаний на WM нажатием кнопки «RF Level» (RF Off), расположенной на передней панели. Отсоединить измеритель от аттенюатора 2, повернуть его относительно продольной оси приблизительно на угол 180° и подключить обратно. Нажать кнопку «RF Level» (RF On) на передней панели WM. Повторить 7.5.4.4 – 7.5.4.7. При необходимости выполнить калибровку образцового ваттметра. Рассчитать и зафиксировать среднее арифметическое значение (*λ*_{CP}) для двух значений *λ* на каждой частоте по формуле (5).

A1 – блок индикаторный образцового ваттметра; A2 – преобразователь измерительный образцового ваттметра; A3 – WM; A4 – переход 1; A5 – аттенюатор 3; A6, A8 – аттенюаторы 1 и 2 соответственно; A7 – делитель мощности; A9 – измеритель Рисунок 7

7.5.4.9 Определить составляющую погрешности измерений, зависящую от частоты δ_{1i} , %, на опорном уровне мощности (минус 20 дБм) по формуле:

$$\delta_{1j} = \P_{CPj} - 1 \stackrel{\frown}{\searrow} 100 \tag{7}$$

где λ_{*CPj*} – средние значения коэффициентов для частот в последовательности: 50 МГц и от 1 до 18 ГГц с шагом 1 ГГц.

7.5.4.10 Рассчитать значения основной погрешности δ_{ij} , %, для каждой *j*-й частоты и на каждом *i*-м уровне мощности по формуле:

$$\delta_{ii} = \delta_{i1} + \delta_{1i} - \delta_{11} \tag{8}$$

где δ_{11} – значение, определенное на опорной частоте (50 МГц) и опорном уровне мощности (минус 20 дБм).

7.5.4.11 Проверить выполнение условия (для каждого значения δ_{ii}):

$$\left|\delta_{ij}\right| \leq \left(\delta^{HOM} + \frac{2 \cdot \sigma^{HOM}}{P_i} \cdot 100\right) \tag{9}$$

где σ^{HOM} – номинальное значение СКО результата измерений равное 2,5 нВт;

 δ^{HOM} – номинальное значение относительной погрешности равное 20 %;

 P_i – значения уровней мощности, нВт, для которых определялись δ_{i1} .

7.5.5 Результаты проверки считать положительными, если выполняются 7.5.2.9 и 7.5.4.11.

7.6 Проверка программного обеспечения

7.6.1 Проверка проводится для подтверждения соответствия программного обеспечения тому ПО, которое было зафиксировано при испытаниях в целях утверждения типа средства измерений. С целью обеспечения защиты программного обеспечения от несанкционированного доступа во избежание искажений результатов измерений. Проверке подлежит встроенное и автономное (из комплекта поставки) программное обеспечение

7.6.2 Подготовить измеритель к работе в соответствии с разделом 3 руководства по эксплуатации ЖНКЮ.468161.001 РЭ. Включить измеритель.

7.6.3 Проверить встроенное программное обеспечение путем проверки его идентификационного наименования («ИЗМЕРИТЕЛЬ МОЩНОСТИ МЗМ–18») и номера версии («1.2.5»), отображаемых на дисплее измерителя после включения кнопкой включения/выключения измерителя. Вид окна дисплея при отображении идентификационных данных встроенного ПО приведен на рисунке 8.

Рисунок 8

7.6.4 Запустить на персональном компьютере автономное ПО (программу «Измеритель мощности СВЧ») с СD-диска из комплекта поставки в соответствии с указаниями, приведенными в руководстве по эксплуатации на измеритель.

7.6.5 Подсоединить измеритель к USB входу персонального компьютера (установить связь). Проверить идентификационное наименование и номер версии ПО, отображаемые при его запуске на экране персонального компьютера на соответствие рисунку 9.

Рисунок 9

7.6.6 Определить цифровой идентификатор автономного ПО путем расчета контрольной суммы файла «M3MClient.exe» по алгоритму md5 при помощи программы (утилиты) «WinMD5 free», находящейся в свободном доступе сети Internet (сайт www.winmd5.com). Для расчета цифрового идентификатора необходимо выполнить следующие операции:

– запустить программу «WinMD5 free» (вид окна программы приведен на рисун-ке 10);

– нажать кнопку «Browse» и в появившемся диалоговом окне «Открыть» указать путь к расположению исполняемого файла «M3MClient.exe». После выбора файла программа автоматически произведет расчет контрольной суммы. Результат будет отражен в поле «Current file MD5 checksum value:».

7.6.7 Цифровой идентификатор должен соответствовать указанному на рисунке 10.

7.6.8 Занести в свидетельство о поверке идентификационные данные программного обеспечения: наименование, номер версии, цифровой идентификатор.

😪 WinMD5Free v1.20	
WinMD5Free	www.winmd5.com
Select a file to compute MD5 checksum (or drag and drop a file onto this window)	
C:\Program Files\M3M\Install\M3MClient.exe	Browse
File Name and Size: C:\Program Files\M3M\Install\M3MClient.exe (1628672 by Current file MD5 checksum value:	Cancel
592684ccdd850db9be0fb295a848449f	
Original file MD5 checksum value (optional). It usually can be found from website paste its original md5 value to verify Verify	or .md5 file.
Website About	Exit

Рисунок 10

7.6.9 Результат проверки считать положительным, если идентификационные данные встроенного и автономного ПО соответствует приведенным на рисунках 8, 9 и 10. В противном случае измеритель, бракуется и направляется в ремонт.

8 Оформление результатов поверки

8.1 При положительных результатах поверки оформляют свидетельство о поверке в соответствии с ПР 50.2.006–94; в руководство по эксплуатации измерителя заносят сведения о поверке и номер поверительного клейма в соответствии с ПР 50.2.007–94. На оборотной стороне свидетельства о поверке указывают информацию, о том, что поверка выполнена в соответствии с настоящей методикой поверки.

8.2 При отрицательных результатах поверки оформляют извещение о непригодности по ПР 50.2.006–94, результаты предыдущей поверки аннулируются (аннулируется свидетельство о поверке и гасится поверительное клеймо), в паспорте измерителя делается соответствующая отметка.

Приложение А

Таблицы данных поверки

Частота, ГГц	0,05	1	2	3	4	5	6	7	8	9		
<i>Р</i> ,дБм												
<i>Р_{К1}</i> , дБм												
<i>Р</i> _{<i>K2</i>} , дБм												
<i>K1_f</i> , дБ												
<i>К2_f</i> , дБ												
$k_{_f}$, дБ												
Частота, ГГц		10			1	1			12			
<i>Р</i> ,дБм												
<i>Р_{КI}</i> , дБм												
<i>Р</i> _{<i>к2</i>} , дБм												
<i>K1_f</i> , дБ												
<i>К2_f</i> , дБ												
$k_{_f}$, дБ												
Частота, ГГц		13			14				15			
<i>Р</i> , дБм												
<i>Р_{кі}</i> , дБм												
<i>Р</i> _{<i>к2</i>} , дБм												
Kl_{f} , дБ												
<i>K2_f</i> , дБ												
$k_{_f}$, дБ												
Частота, ГГц		16			17			18				
<i>Р</i> , дБм												
<i>Р_{КI}</i> , дБм												
<i>Р</i> _{<i>к2</i>} , дБм												
Kl_{f} , дБ												
<i>К2_f</i> , дБ												
k_{f} , дБ												

Таблица А.1 – Определение коэффициентов передачи делителя мощности

Таблица А.2 – КСВН входа измерителя

Диапазон частот, ГГц	Максимально-допустимое значение	Измеренное значение
от 0,01 до 12,00	1,4	
от 12 до 18	1,5	

Таблица А.3 – Определение СКО результата измерений

Допустимое значение, нВт	Измеренное значение, нВт					
2,5						

Таблица А.4 – Определение составляющей погрешности, зависящей от уровня мощности

Мощность СВЧ, дБм	<i>Р</i> ₀ , дБм	Р _{изм} , дБм	λ_i , дБ	λ_{CP} , раз	Значение погр. δ_{i1} , %
10					
5					
0					
-10				-	
-20				-	
-30 усредне- ние 32					
-40 усредне- ние 64				-	

Частота, ГГц	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
<i>P</i> ₀ , дБм																		
<i>Р_{ИЗМ}</i> , дБм																		
λ ₁ , дБ																		
<i>P</i> ₀ , дБм																		
<i>Р_{ИЗМ}</i> , дБм																		
λ ₂ , дБ																		
λ_{cp} , раз																		
Знач. δ_{1j} , %																		

Таблица А.5 – Определение составляющей погрешности, зависящей от частоты

Таблица А.6 – Расчет основной поі	решности измерений δ_{ii}	для каждой <i>ј</i> ·	-й частоты и на каждом	<i>і</i> -м уровне мощности
-----------------------------------	----------------------------------	-----------------------	------------------------	-----------------------------

Мощность	Частота, ГГц																		
СВЧ, дБм	0,05	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
-20																			
10																			
5																			
0																			
-10																			
-30																			
-40																			
Пределы основной погрешности измерений																			
Мощности СВЧ, дБм	-20			10 5			0		-10			-30			-40				
Действ. знач., %																			
Ном. знач., %	20,1		20,0 20,0		0,0		20,0		20,0			20,5			25,0				